Journal of Organometallic Chemistry, 111 (1976) C9-C12
(c) Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

REACTION OF TETRAKIS(TRIFLUOROMETHYL)ALLENE WITH CARBONYLATE ANIONS. X-RAY STUDY OF THREE NOVEL FLUOROOLEFINIC COMPLEXES

A.N. NESMEYANOV, G.G. ALEKSANDROV, N.G. BOKII, I.B. ZLOTINA, Yu.T. STRUCHKOV* and N.E. KOLOBOVA

Institute of Organo-Element Compounds, Academy of Sciences of the USSR, Vavilov Str. 28, Moscow, B-312 (U.S.S.R.)
(Received February 10th, 1976)

Abstract

Summary X-ray structure analysis is carried out for three new complexes prepared by interaction of tetrakis(trifluoromethyl)allene with carbonylate anions $\left[\mathrm{CpFe}(\mathrm{CO})_{2}\right]^{-}$and $\left[\operatorname{Re}(\mathrm{CO})_{5}\right]^{-}$. In the molecule of $\left[\left\{\left(\mathrm{F}_{3} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{C}-\mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{CF}_{2}\right\}\right.$ $\left.\operatorname{Re}(\mathrm{CO})_{5}\right]$ the η^{1}-butadienyl ligand is non-planar with a dihedral angle of 83° due to steric overcrowding and is bonded by the $\operatorname{Re}-C \sigma$-bond ($2.25 \AA$). In the complex $\left[\left\{\left(\mathrm{F}_{3} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{C} \because \mathrm{C}\left(\mathrm{CF}_{3}\right) \cdots \mathrm{CF}_{2}\right\} \mathrm{Fe}\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{PPh}_{3}\right]$ the unusual η^{3}-allylidene ligand is found. One of its double bonds is not coordinated by metal. In the sandwich molecule $\left[\left\{\left(\mathrm{F}_{3} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{C} \cdots \mathrm{CF} \cdots \mathrm{C}\left(\mathrm{CF}_{3}\right) \cdots \mathrm{CH} \because \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right\}\right.$ -$\left.\mathrm{Fe}\left(\eta^{5}-\mathrm{Cp}\right)\right]$ the dihedral angle between η^{5}-ligands is equal to 7°. One of them is a novel acyclic pentadienylidene ligand with a terminal double $\mathrm{C}=\mathrm{C}$ bond not interacting with metal. The nature of the two latter complexes was revealed by the present X-ray study.

Recently it was reported [1] that tetrakis(trifluoromethyl)allene (I) reacted in THF at $-70^{\circ} \mathrm{C}$ with carbonylate anions $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]^{-}$and $\left[\mathrm{Re}(\mathrm{CO})_{5}\right]^{-}$ cleaving-off one fluorine atom. As the most electron-deficient centre of allene is its central carbon atom, carbonylate anions probably attack this atom with migration of one of the allenic double bonds, cleaving-off of a fluorine atom which is in allylic position relative to the attacked site thus forming the σ-complexes II and III (Scheme 1) with 2,4,4-tris(trifluoromethyl)-1,1-difluorobuta-1,3-dien-3-yl ligand.

By heating or UV irradiation in solution complex III readily cleaves off a CO group turning into complex IV. In photochemical reactions of III with PPh_{3} besides the cleaving-off of one CO group, replacement of the second CO ligand by PPh_{3} takes place with formation of complex V. Results of elemental analysis, IR, PMR and ${ }^{19}$ F NMR spectra are consistent with the proposed structures of compounds II-V [2].

(I)

(घ1)

(ㅍ)

(III)

(Z)

In reactions of I with $\mathrm{Na}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]$ in THF at $0^{\circ} \mathrm{C}$ we succeeded in isolating besides III, a small yield (4\%) of another crystalline complex VI with composition $\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~F}_{16} \mathrm{Fe}$ which was characterized by IR and mass spectra [3].

To elucidate transformations of perfluoroolefinic ligand I and to establish unequivocally structures of the complexes formed we undertook an X-ray study of II, V and VI (four-circle automatic Hilger \& Watts diffractometer, Mo-radiation, graphite monochromator, heavy atom technique, block-diagonal anisotropic least squares refinement).

Crystal data II, triclinic, a 8.842(3), b 11.950(5), c 8.817(3) A, $\alpha 92.80(4)^{\circ}$, $\beta 115.80(4)^{\circ}, \gamma 90.70(4)^{\circ}, D_{m} 2.44, D_{c} 2.46 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$, space group $P \overline{1}$, 2000 independent reflections, $R=0.099$. V , monoclinic, a $10.423(3)$, b 19.375(4), c 15.202(4) $\AA, \beta 116.77(3)^{\circ}, D_{m} 1.63, D_{c} 1.64 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$, space group $P 2_{1} / c, 2006$ independent reflections, $R=0.039$, all hydrogen atoms located and refined isotropically. VI, monoclinic, a 23.70(1), b 10.046(8), c 15.41(1) \AA, $\beta 98.32(5)^{\circ}, D_{m} 2.05, D_{c} 2.05 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=8$, space group $C 2 / c, 1500$ independent reflections, $R=0.080$.

For complex II the structure with octahedral coordination of the metal atom is confirmed (Fig. 1) :five CO groups (av. Re-C 1.98(2), C-O 1.16(2) \AA, $\leq \operatorname{Re}-\mathrm{C}-\mathrm{O}$ 175(1) $)$ and a σ-bonded η^{1}-butadienyl ligand with the usual [4] $\mathrm{Re}-\mathrm{C}(2)$ bond length of $2.25(3) \mathrm{A}$. In accordance with $s p^{2}$-hybridization of $\mathrm{C}(1)$, $C(2), C(3)$ and $C(4)$ four atomic fragments centered on these atoms are planar, however, the butadiene system as a whole is essentially non-planar with the dihedral angle $\mathbf{C}(1)=\mathbf{C}(2)-\mathbf{C}(3)=\mathbf{C}(4)$ of $83(1)^{\circ}$. This distortion is due to steric hindrance because in planar conformations the non-bonded distances $\mathrm{CF}_{3} \cdots \mathrm{CF}_{3}$ in the trans- and $\mathrm{CF}_{3} \cdots \mathrm{CF}_{2}$ in the cis-form would be equal to ca. 2.3 A , i.e. in-

Fig. 1. Molecular geometry of II with main bond lengths and angles.

Fig. 2. Molecular geometry of V with main bond lengths and angles.

Fig. 3. Molecular geometry of VI with main bond lengths and angles.
admissibly short. Steric repulsion $R{ }^{\prime} \cdots$ F (3.28(1) A) leads also to distortion of the planar-trigonal bond configuration around $\mathrm{C}(3)$: the $\mathrm{Re}-\mathrm{C}(3)-\mathrm{C}(4)$ angle is increased to $134(2)^{\circ}$.

In complex V (Fig. 2) the iron atom is coordinated by the η^{5}-Cp-ring (av. $\mathrm{Fe}-\mathrm{C} 2.113(4), \mathrm{C}-\mathrm{C} 1.416(6) \AA$), the PPh_{3} ligand ($\mathrm{Fe}-\mathrm{P} 2.292(2) \AA$) and the π-allylic system of the η^{3}-butadienyl ligand. The double bond $C(1)=C(2)$ of $1.319(8) \AA$ length does not interact with the metal atom ($\mathrm{Fe} \cdots \mathrm{C}(1) 3.143(6) \AA$) and is inclined to the allylic plane at $28.3(9)^{\circ}$. Allylic and Cp ligands form a wedge-like "sandwich" (dihedral angle between their planes is $5(1)^{\circ}$) to accomodate the PPh_{3} ligand. The novel allylidene ligand in V represents an isomeric form of butadienyl arising because of changes in electronic requirements of the metal caused by replacement of two CO groups by a single PH_{3} ligand.

The Fe - C (allyl) distances in V are shorter than in ordinary π-allyl complexes of iron [5]. The especially pronounced $\mathrm{Fe}-\mathrm{C}(2)$ shortening to $1.905(6) \AA$ and the opening of the $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ angle to $134.5(7)^{\circ}$ bring V near allene complexes [6].

The structure of VI turned out to be different from that expected (Fig. 3). In VI the iron atom is coordinated by the n^{5}-Cp ligand (av. $\mathrm{Fe}-\mathrm{C} 2.09(1), \mathrm{C}-\mathrm{C}$ $1.42(2) \AA$) and the acyclic η^{5}-pentadienyl fragment of 1,1,4,6,6-pentakis(tri-fluoromethyl)-3-fluorohexa-1,3,5-trien-2-yl ligand, the two η^{5}-systems being almost parallel (dihedral angle 7(1) ${ }^{\circ}$). As in V one of the double bonds $C(1)=C(2)$ of $1.35(1) \AA$ length is not coordinated by the metal ($\mathrm{Fe} \cdots \mathrm{C}(1) 3.16(2) \AA$), i.e. this novel ligand is to be named pentadienylidene. It is bonded similarly to the allylidene ligand in V : average $\mathrm{C}=\mathrm{C}$ 1.42(2) \AA, the $\mathrm{Fe}-\mathrm{C}(2)$ distance of 1.91 (1) \AA is considerably shorter than others (2.01-2.14 \AA), the angle at $C(2)$ is increased. up to $134(1)^{\circ}$. With the exception of distortions brought about by the uncoordinated double bond the bonding of the η^{5}-pentadienyl system is similar to that found in the pentadienyl complex of tricarbonylmanganese [7]. The $C(1)=C(2)$ bond is inclined to the mean least-squares plane $C(2)^{\cdots} C(6)$ at $21(1)^{\circ}$, and $C(5)$ is displaced from this plane by $0.10 \mathrm{\AA}$, i.e. the five-atomic conjugated system is not quite planar. Both CF_{3}-groups at $\mathrm{C}(6)$ are also displaced from the mean plane mentioned ($\mathrm{C}(10)$ by $1.38 \AA$ from the Fe atom, $\mathrm{C}(11)$ by $0.40 \AA$ towards it).

Formation of a novel trienyl ligand by reaction of I does not seem unaccountably strange in view of recent data concerning fluorine migration [8] and carboncarbon double bond cleavage [9] in reactions of fluoroolefins with transition metal complexes. However the mechanism of the corresponding process, namely formation of VI, is unclear at present and demands further investigation.

References

[^0]
[^0]: 1 A.N. Nesmeyanov, N.E. Kolobova, G.K. Znobina, K.N. Anisimov. I.B. Zlotina and M.D. Bagramova, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 2168.
 2 A.N. Nesmeyanov, N.E. Kolobova, I,B, Zlotina, B.V. Lokshin, I.F. Leshcheva, G.K. Zlobina and F.N. Anisimov, Izv. Akad. Nauk SSSR, Ser. Khim., in press.

 3 A.N. Nesmeyanov, N.E. Kolobova, I.B. Zlotina, Yu.S. Nekrasov, V.F. Sizoy and K.N. Anisimov, Dokl. Akad. Nauk SSSR, 224 (1975) 604.
 4 V.G. Andrianov, B.P. Biryukov and Yu.T. Struchkov, Zh. Strukt. Khim, 10 (1969) 1129.
 5 F.A. Cotton, B.A. Frenz and J.M. Troup, J. Organometal. Chem., 61 (1973) 337.
 6 B.Y. Shaw and A.J. Stringer, Inorg Chim. Acta Revs. 7 (1975) 1.
 7 M.J. Barrow and O.S. Mills, Acta Cryst., B, 30 (1974) 1635.
 8 M. Green, A.K. Howard, A. Laguna, M. Murray, J.L. Spencer and F.G.A. Stone, J. Chem. Soc., Chem. Cormmun, (1975) 451.
 9 J.L. Davidson, M. Green, F.G.A. Stone and A.J. Welsh, J. Chem. Soc., Chem. Commun., (1975) 286.

